
Global Nonlinear Regression with GraphPad Prism 4 1
 
 
  

Global nonlinear regression with Prism 4  
Harvey J. Motulsky (GraphPad Software) and Arthur Christopoulos (Univ. 
Melbourne) 

Introduction 

Nonlinear regression is usually used to analyze data 
sets one at a time. Global nonlinear regression fits an 
entire family of data sets at once, sharing one or more 
parameters between data sets. For each shared 
parameter, global nonlinear regression finds one 
(global) best-fit value that applies to all the data sets. 

Global curve fitting has been available for decades, but 
is used infrequently by biological researchers. To give 
you a sense of how versatile this technique is, we 
present here five examples of pharmacology 
experiments that are usually analyzed by fitting curves 
one at a time, but could also be analyzed by global 
curve fitting.  

How global nonlinear regression works 

Nonlinear regression finds parameters of a model that 
make the curve come as close as possible to the data. 
This is done by minimizing the sum of the squares of 
the vertical distances between the data points and 
curve. Mathematical statisticians have proven that if 
the scatter of data points around the curve follows a 
Gaussian distribution, the parameter values that 
minimize the sum-of-squares are those that are most 
likely to be correct. 

Global nonlinear regression extends this idea to fitting 
several data sets at once. Calculate the sum-of-squares 
of the curves from each data set, and then add them to 
compute a total. Global nonlinear regression minimizes 
this total sum-of-squares.  

Global fitting only makes sense when all the data are 
expressed in the same units. If different data sets are 
expressed in different units, be cautious about using 
global fitting. The problem is that your decision about 
which units to use can change the results. For  
example, imagine what happens if you change one data 

set from expressing weight in grams to expressing 
weight in milligrams. All the values are now increased 
by a factor of one thousand, and the sum-of-squares for 
that data set is increased by a factor of one million (one 
thousand squared). Compared to other data sets, 
expressed in different units, this data set now has a 
much greater impact on the fit. If you really need to do 
global fit to data sets using different units, consider 
first normalizing the data so they are comparable. 

Example 1. Fitting incomplete data sets.  

The graph below shows two dose-response curves. The 
goal of the experiment is to determine the two EC50 
values. The EC50 is the concentration (dose) that gives 
a response half-way between the minimum and 
maximum responses. Each curve in the graph below 
was fit individually to one of the data sets. The 
horizontal lines show the 95% confidence interval of 
the EC50. 
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While the curves nicely fit the data points, the 
confidence intervals are quite wide. We really haven't 
determined the EC50 with sufficient precision to make 
useful conclusions. The problem is that the control data 
don’t really define the bottom plateau of the curve, and 
the treated data don’t really define the top plateau of 
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the curve. Since the data don’t define the minimum and 
maximum responses very well, the data also don't 
define very clearly the point half-way between the 
minimum and maximum responses. Accordingly, the 
confidence intervals for each EC50 extend over more 
than an order of magnitude.  

The whole point of the experiment was to determine 
the two EC50 values, and (with this analysis) the results 
were disappointing. There is an unacceptable amount 
of uncertainty in the value of the best-fit values of the 
EC50.  

One way to determine the EC50 values with less 
uncertainty is to redo the experiment, collecting data 
over a wider range of doses. But it is also possible to 
get better results from the data we have. One problem 
is that we don't know the bottom of the curve. If we 
had control data with zero dose, we could fix the 
bottom plateau to those control values. Another 
approach would be to average the first few responses in 
the control (left) curve and define this average to be the 
minimum response. Then average the last few 
responses in the treated (right) curve and define this 
average to be the maximum response. Then fit the two 
curves separately, fixing the top and bottom of the 
curve to constant values defined by the minimum and 
maximum responses. You'll get reasonable results this 
way, but it is a bit arbitrary. Do you define the 
minimum based on just the first concentration, the 
mean of the first two, the mean of the first three… ? 
You'll encounter the same problem if you normalize 
the responses from 0 to 100, and then fix the bottom 
plateau to equal 0 and the top plateau to equal 100. 
Before you can do this normalization, you must decide 
which values define the top and bottom of the curve. 

You can get much better results from the original set of 
data by analyzing the data more sensibly, using global 
curve fitting. When you use global curve fitting, you 
have to tell the program which parameters to share 
between data sets and which to fit individually. For this 
example, we’ll instruct the program to find one shared 
best-fit value of the top plateau that applies to both 
data sets, one shared best-fit value of the bottom 
plateau that applies to both data sets, and one shared 
best-fit value of the slope factor (how steep is the 
curve) that applies to both data sets. Of course, we 
won’t ask the program to share the EC50 value. We 
want the program to determine the EC50 separately for 
control and treated data.  

To do global fitting with Prism 4, you specify which 
parameters are to be shared on the constraints tab. In 
this example, we'll also constrain the parameter Bottom 
to be greater than zero. 

 

Here are the results. 
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The graph of the curves looks only slightly different. 
But now the program finds the best-fit parameters with 
great confidence. Each EC50 value is determined, with 
95% confidence, within a factor of two (compared to a 
factor of ten or more when the curves were fit 
individually). We’ve accomplished the goal of the 
experiment, to determine the two EC50 values with 
reasonable certainty.  

The control data define the top of the curve pretty well, 
but not the bottom. The treated data define the bottom of 
the curve pretty well, but not the top. By fitting both 
data sets at once, using a global model, we are able to 
determine both EC50 values with reasonable certainty. 
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Example 2. Shift of dose-response curve in the 
presence of an antagonist. 

If you perform a dose-response curve in the presence 
of a competitive antagonist, the dose-response curve is 
shifted to the right as shown below. You are not only 
interested in the individual EC50 values. You want to 
know how the EC50 changes when you increase 
antagonist concentration, as this lets you determine the 
affinity of the antagonist (the pA2). 
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The conventional approach is to fit each dose-response 
curve individually, determining an EC50 value for each. 

-10 -9 -8 -7 -6 -5 -4 -3 -2
0

1000

2000

3000

4000

5000

6000

0
1
3
10

[Antagonist, nM]

pA2= 9.290

95% CI: 9.529 to 9.051

 Then, for each concentration of antagonist, compute 
the dose ratio (DR) which is the EC50 of the agonist in 
the presence of the antagonist divided by the EC50 with 
agonist alone. The relationship between DR and 
concentrations of antagonists are then plotted in a 
Schild plot. 
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If you set DR to 2.0, the log(DR-1) equals zero. Thus 
the X intercept of the linear regression line is the 
logarithm of the concentration of antagonist required to 
shift the agonist dose-response EC50 by a factor of two. 
If you make additional assumptions (competitive 
binding, Hill slope of 1.0) this value is the equilibrium 
dissociation constant for antagonist binding. In this 
example, the concentration of antagonist required to 
shift the agonist dose-response curve by a factor of two 
is 10-9.335M, or 0.463 nM. Multiply the logarithm of 
that value by -1 to get the pA2, which is 9.335. 

When you analyze data, you don't just want to know 
the best-fit value of a parameter (in this case the pA2) 
but also its 95% confidence interval so you know how 
precisely you have determined the parameter. The 
Schild plot in the lower panel above shows the 95% 
confidence band of the linear regression line as dashed 
curves. You can see that the upper confidence band 
never crosses the axis at Y=0. This means that the 
lower confidence limit for the X intercept is simply not 
defined. While the Schild analysis gives us a value for 
the pA2, it is not able to quantify its precision in this 
example. 

Using global fitting, you can analyze all the data at 
once, saving the hassles of calculating dose-ratios and 
creating a Schild plot. The results of global fitting are 
also more precise, and you get a confidence interval as 
well as the best-fit value of the pA2. Here is the 
equation describing the response of an agonist in the 
presence of a competitive antagonist.  
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The Y values are the responses. The X values are the 
log of agonist concentration. The concentration of 
antagonist is a constant for each curve, but differs 
between curves. In Prism, you enter these values as 
column titles, and then define the parameter to be a 
data set constant. HillSlope is the slope of the agonist-
only dose-response curve. S is the Hill Slope of 
antagonist binding. For this example, we'll fix S to 1.0, 
assuming competitive one-site binding. 

Here is the data table. Note that the column titles are 
labeled with the antagonist concentrations (in nM for 
this example). You'll see in a moment how these are 
read by Prism.  

 

Here is the equation entered as a user-defined equation, 
followed by the rules for initial values. 

 

 

To use global fitting, we need to specify which parameters 
are shared. We also need to tell Prism that the antagonist 
concentrations are in the column titles. This is done on the 
constraints tab of the nonlinear regression dialog.  

 

We defined the parameter ANTAGNM (antagonist 
concentration in nM) to be a data set constant, whose values 
for each data set comes from the column title of that data set. 
We set S equal to a constant of 1.0. We are assuming that the 
antagonist binds competitively. We share all the other 
parameters, so their values are determined by all the data at 
once.  

In this example, the best-fit value of pA2 is 9.43, with a 95% 
confidence interval ranging from 9.28 to 9.59.  
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Example 3. Total plus nonspecific binding. 

In this example, we measured equilibrium binding of 
radioligand at various concentrations of radioligand to 
find the Bmax and Kd of the radioligand. Since the 
ligand binds to nonspecific sites as well as the receptor 
of interest, you also measure nonspecific binding 
(binding of radioligand in the presence of an excess of 
an unlabeled receptor blocker). 
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These kind of data are usually analyzed by first 
subtracting the nonspecific binding from the total 
binding. The resulting specific binding is then fit to a 
model that describes equilibrium binding to one 
receptor site.  

Global fitting can simultaneously fit both the total 
binding and the nonspecific binding. There is no need 
to first subtract the two data sets. The only trick is to 
write a model that fits different equations to each data 
set. Prism lets you do this, as shown below.   

Specific=Bmax*X/(Kd+X) 
Nonspecific=NS*X 
<A>Y=Specific + Nonspecific 
<B>Y=Nonspecific 

 

The line preceded by <A> only applies to the first data 
set (column A, total binding). The line preceded by 

<B> only applies to the second data set (nonspecific 
binding). If you precede a line with <~A> it applies to 
all lines except the first.  

Here is the result. We used global nonlinear regression 
to fit both data sets at once, sharing the parameter NS. 
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Best-fit values
     BMAX
     KD
     NS
95% Confidence Intervals
     BMAX
     KD
     NS

Total

1266
4.285
24.59

1124 to 1407
3.406 to 5.164
23.25 to 25.92

NS

(not used)
(not used)
24.59

(not used)
(not used)
23.25 to 25.92  

Example 4. Comparing data sets 

Global fitting can be used to compare curves between 
data sets. The example below shows a dose-response 
curve collected under control and treated conditions. 
We want to know whether the difference between the 
two dose-response curves is convincing.   

The panel on the left assumes that the treatment was 
effective. It fits the two logEC50 separately, but shares 
the parameters that define the bottom, top and slope of 
the curve. The panel on the right assumes that the 
treatment is ineffective. It shares all four parameters, 
so finds one curve for all the data. This is equivalent to 
entering all the data as one big data set. The fit on the 
left has a smaller sum-of-squares (the points are closer, 
on average, to the separate curves), but also has an 
extra parameter (since it fits two EC50s, rather than 
one).  
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Separate curves for each data set
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Prism offers two ways to compare the two fits.  

The extra sum-of-squares F test starts with an 
assumption, also known as the null hypothesis. This 
assumption is that the treatment is really ineffective. 
The test then asks: If this assumption were true, what is 
the chance that the model on the left would fit your 
data as much better as it does? In other words, what is 
the chance that you'd see such a large difference in 
sum-of-squares? The answer, the P value, is 0.0024. 
Since this is so small, we conclude that the assumption 
is likely to be wrong. Instead we conclude that the 
treatment had a statistically significant effect on the 
EC50.  

Prism can also compare the two fits using Akaike's 
Information Criterion (AIC). This procedure answers 
the question: Which model (right or left panel) is more 
likely to be correct, and how much more likely? The 
answer is that the model on the left is 47 times more 
likely to be right. There is a 2.1% chance that the 
model on the right is correct, and a 97.9% chance that 
the model on the left is right. 

Example 5. Homologous binding 

You want to know how many of a particular kind of 
receptor your tissue sample has, and how tightly a 
particular drug (ligand) binds to those receptors. Since 
the radioligand is quite expensive, you don't vary its 
concentration. Instead, you add a single concentration 
of a radioactively labeled drug to all the tubes, and also 
add various amounts of the same drug that is not 
radioactively labeled. You assume that the two forms 
of the ligand bind identically to the receptors, that you 
have reached equilibrium, that the ligand only binds to 
one kind of receptor, and that there is no cooperativity. 
As you add more of the unlabeled ligand, more of it 
binds to the receptors so less of the radioactive ligand 
binds. Since you only measure binding of the labeled 
(radioactive) ligand, you see a downhill binding curve. 
You want your analysis to find the affinity of the 
receptors for the drug (Kd) and also the maximum 
number of binding sites (Bmax). 

Here are some sample data. This experiment was run 
with two different concentrations of the radioligand. 
This is unusual (most homologous binding experiments 
use a single concentration of radioligand), and you'll 
see the advantage of using two concentrations later in 
this example. 
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From the law of mass-action, it is easy to derive an 
equation that describes the binding.  

max

d

B ×[Hot]
Y= +NS

[Hot]+[Cold]+K
 

The concentration of hot ligand (the parameter [Hot]) 
is fixed by your experimental design, and is the same 
for all tubes. The concentration of cold (the parameter 
[Cold]) is also set by the experimenter, and varies from 
tube to tube. In order to find more appropriate 
confidence intervals of the Kd, it is better to actually fit 
the logarithm of the Kd (LogKd), using this equation. 

d

max
logK

B ×[Hot]
Y= +NS

[Hot]+[Cold]+10
 

Here are the best-fit curves, each determined 
independently. 
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Note that the Bmax is the total possible specific binding 
(in cpm) to all binding sites.  At the concentration of 
radioligands used in this experiment, the radioligand 
binds to only a fraction of these sites. That explains 
why the best-fit Bmax values (6125-8205 cpm) are quite 
a bit higher than the observed specific binding (about 
1000-4000 cpm). 

Note that the confidence intervals are quite wide. The 
confidence interval for Kd extends over an order of 
magnitude, and the confidence interval for Bmax 
extends more than twofold. Why? Because you get 
almost the same results when you have lots of 
receptors that bind the drug weakly, or a few receptors 
that bind the drug tightly. The graph below 
superimposes three curves through the data collected 
using 1 nM of radioligand. The solid curve is the same 
one shown above, with a logKd of -9.2 and a Bmax of 
8205. The dashed curve was fit constraining the Kd to 
be an order of magnitude lower (so logKd was fixed to 
equal -10.2). With this constraint, the best-fit value of 
Bmax decreased to 5388. This curve is almost 
indistinguishable from the best-fit solid curve. The 
dotted curve constrains the Kd to be an order of 
magnitude higher than the best fit value (the logKd was 
fixed to equal -8.2). Since the ligand has much lower 
affinity for the receptors, it must be binding to a small 
fraction of many more receptors. This explains why the 
best fit value of Bmax increases four fold to 25813. The 
dotted curve clearly fits the data less well than the solid 
curve, but the difference is not enormous (the R2 
decreases from 0.964 only down to 0.904). What does 
it mean that these three curves, which look very similar 
to one another, span two orders of magnitude in 
receptor affinity? This tells us that homologous binding 

data are simply ambiguous when you use a single 
concentration of radiolabeled ligand. 
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The graph below shows the two curves fit globally. 
There is only one Kd and one Bmax no matter how much 
radioligand you use, so these parameters were shared 
between the data sets. Only the best-fit value of the 
nonspecific binding was fit individually for each data 
set.  
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Note that the confidence intervals are narrower than 
they were. The confidence interval for Kd now spans a 
factor of two, rather than a factor of ten with individual 
fits. Fitting both curves at once gave us much more 
reliable (and more accurate) results. Fitting the data 
globally gave us useful results. Fitting the two curves 
individually did not. 

 


