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Introduction

Nonlinear regression is usualy used to analyze data
sets one at atime. Global nonlinear regression fits an
entirefamily of data sets at once, sharing one or more
parameters between data sets. For each shared
parameter, globa nonlinear regression finds one
(global) best-fit value that appliesto all the data sets.

Glabal curve fitting has been available for decades, but
isused infrequently by biological researchers. To give
you a sense of how versatile thistechnique is, we
present here five examples of pharmacol ogy
experiments that are usually analyzed by fitting curves
one at atime, but could also be analyzed by global
curve fitting.

set from expressing weight in grams to expressing
weight in milligrams. All the values are now increased
by afactor of one thousand, and the sum-of-squares for
that data set is increased by afactor of one million (one
thousand squared). Compared to other data sets,
expressed in different units, this data set now has a
much greater impact on thefit. If you really need to do
global fit to data sets using different units, consider
first normalizing the data so they are comparable.

How global nonlinear regression works

Nonlinear regression finds parameters of a model that
make the curve come as close as possible to the data
This is done by minimizing the sum of the squares of
the vertical distances between the data points and
curve. Mathematical stetisticians have proven that if
the scatter of data points around the curve follows a
Gaussian distribution, the parameter values that
minimize the sum-of-sgquares are those that are most
likely to be correct.

Glabal nonlinear regression extends this idea to fitting
several data sets at once. Calculate the sum-of-squares
of the curves from each data set, and then add them to
compute atotal. Global nonlinear regression minimizes
this total sum-of-squares.

Global fitting only makes sense when all the data are
expressed in the same units. If different data sets are
expressed in different units, be cautious about using
global fitting. The problem is that your decision about
which units to use can change the results. For

example, imagine what happens if you change one data

Example 1. Fitting incomplete data sets.

The graph below shows two dose-response curves. The
goal of the experiment isto determine the two ECs
values. The ECs is the concentration (dose) that gives
aresponse half-way between the minimum and
maximum responses. Each curve in the graph below
was fit individually to one of the data sets. The
horizontal lines show the 95% confidence interval of
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While the curves nicdy fit the data points, the
confidence intervals are quite wide. We really haven't
determined the ECs, with sufficient precision to make
useful conclusions. The problem is that the control data
don't really define the bottom plateau of the curve, and
the treated data don’t really define the top plateau of
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the curve. Since the data don’t define the minimum and
maximum responses very well, the data also don't
define very clearly the point half-way between the
minimum and maximum responses. Accordingly, the
confidence intervals for each ECs, extend over more
than an order of magnitude.

The whole point of the experiment was to determine
the two ECs values, and (with this analysis) the results
were disappointing. There is an unacceptable amount
of uncertainty in the value of the best-fit values of the
ECso.

One way to determine the ECs, values with less
uncertainty isto redo the experiment, collecting data
over awider range of doses. But it is also possible to
get better results from the data we have. One problem
isthat we don't know the bottom of the curve. If we
had control data with zero dose, we could fix the
bottom plateau to those control values. Another
approach would be to average the first few responsesin
the contral (left) curve and define this average to be the
minimum response Then average the last few
responses in the treated (right) curve and define this
average to be the maximum response. Then fit the two
curves separately, fixing the top and bottom of the
curve to constant values defined by the minimum and
maximum responses. You'll get reasonable results this
way, but it isabit arbitrary. Do you define the
minimum based on just the first concentration, the
mean of the first two, the mean of the first three... ?
You'll encounter the same problem if you normalize
the responses from 0 to 100, and then fix the bottom
plateau to equal 0 and the top plateau to equal 100.
Before you can do this normalization, you must decide
which values define the top and bottom of the curve.

You can get much better results from the original set of
data by analyzing the data more sensibly, using global
curve fitting. When you use global curve fitting, you
haveto tell the program which parameters to share
between data sets and which to fit individualy. For this
example, we'll instruct the program to find one shared
best-fit value of the top plateau that appliesto both
data sets, one shared best-fit value of the bottom
plateau that applies to both data sets, and one shared
best-fit value of the dope factor (how steep isthe
curve) that applies to both data sets. Of course, we
won't ask the program to share the ECs, value. We
want the program to determine the ECs, separately for
control and treated data.

To do global fitting with Prism 4, you specify which
parameters are to be shared on the constraints tab. In
this example, well aso constrain the parameter Bottom
to be greater than zero.

Parameters: Nonlinear Regression (Curve Fit) E]

Equation | Comparisan  Constraints | il values | Weighting | Output | Range |

Fi constrain or share a parameter
Parameter C int Walue

BOTTOM | Shared, an on
TOP Shared v

LOGECSD | No constraint

HILLSLOPE | Shared value for all data sets

<l ]2

Constrain one parameter relative to another
F + | must be gieater than | 1.0 | times: w

F] + | must be greater than 1.0 | times v

HelpMe Decide] | Cancel | [ OF |

Here are the results.
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The graph of the curves looks only dightly different.
But now the program finds the best-fit parameters with
great confidence. Each ECs, value is determined, with
95% confidence, within afactor of two (compared to a
factor of ten or more when the curves were fit
individually). We' ve accomplished the goal of the
experiment, to determine the two ECs;, values with
reasonable certainty.

The control data define the top of the curve pretty well,
but not the bottom. The treated data define the bottom of
the curve pretty well, but not the top. By fitting both
data sets at once, using aglobal model, we are able to
determine both ECs, values with reasonable certainty.
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Example 2. Shift of dose-response curve in the
presence of an antagonist.

If you perform a dose-response curve in the presence
of acompetitive antagonist, the dose-response curve is
shifted to the right as shown below. Y ou are not only
interested in the individual ECs, values. Y ou want to
know how the ECs, changes when you increase
antagonist concentration, as this lets you determine the
affinity of the antagonist (the pA,).
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The conventional approach isto fit each dose-response
curve individually, determining an ECs, value for each.

[Antagonist, nM]

L]
o

6000+

A
v 3
.

5000+

40004

3000+

2000 pA,= 9.290

1000+ 95% CI: 9.529 to 9.051

Then, for each concentration of antagonist, compute
the dose ratio (DR) which is the ECs, of the agonist in
the presence of the antagonist divided by the ECs, with
agonist alone. The relationship between DR and
concentrations of antagonists are then plotted in a
Schild plot.

log(DR-1)

log[Antagonist, M]

If you set DR to 2.0, the log(DR-1) equals zero. Thus
the X intercept of the linear regression line isthe
logarithm of the concentration of antagonist required to
shift the agonist dose-response ECs; by a factor of two.
If you make additional assumptions (competitive
binding, Hill dope of 1.0) thisvaue isthe equilibrium
dissociation constant for antagonist binding. In this
example, the concentration of antagonist required to
shift the agonist dose-response curve by afactor of two
is 10°%*M, or 0.463 nM. Multiply the logarithm of
that value by -1 to get the pA,, which is 9.335.

When you analyze data, you don't just want to know
the best-fit value of a parameter (in this case the pA,)
but also its 95% confidence interval so you know how
precisely you have determined the parameter. The
Schild plot in the lower panel above shows the 95%
confidence band of the linear regression line as dashed
curves. Y ou can see that the upper confidence band
never crosses the axis at Y=0. This means that the
lower confidence limit for the X intercept is simply not
defined. While the Schild analysis gives us a value for
the pA,, itisnot able to quantify its precision in this
example.

Using global fitting, you can analyze al the data at
once, saving the hassles of cal culating dose-ratios and
creating a Schild plot. The results of global fitting are
also more precise, and you get a confidence interval as
well as the best-fit value of the pA,. Hereisthe
equation describing the response of an agonist in the
presence of a competitive antagonist.

Y = Response = Bottom + (TOP_BOttom) HillSope
& e, & ([Antagonist uo
glo N g“([ ag %O'PAZ) g
1+ X N
¢ 10 .
§ o
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The Y values are the responses. The X values are the
log of agonist concentration. The concentration of
antagonist is a constant for each curve, but differs
between curves. In Prism, you enter these values as
column titles, and then define the parameter to be a
data set constant. HillSlope is the slope of the agonist-
only doseresponse curve. Sisthe Hill Slope of
antagonist binding. For this example, well fix Sto 1.0,
assuming competitive one-site binding.

Hereisthe data table. Note that the column titles are
labeled with the antagonist concentrations (in nM for
this example). You'll see in a moment how these are

read by Prism.

X Values A B C 1}

log[Antagonist] 0 4 3 10

X Y Y Y Y
1 -8.5 954 935 1087 1329
2 -5.0 1069 1285 936 1014
3 -5.5 914 895 1207 1069
4 -5.0 1211 321 925 1200
5 -7.5 1425 1486 1054 1106
] -7.0 2330 1563 &86 1101
7 -5.5 3136 1951 1456 S0
8 -5.0 3590 3166 2025 1843
] -5.5 4196 3mo 3406 2206
10 -5.0 4411 4582 4027 v
11 -4.5 4510 4538 47226 4034
12 -4.0 4366 4354 4472 4257
13 -3.5 4700 4743 4656 4379
14 -3.0 4582 4859 4506 4754

Here is the equation entered as a user-defined equation,
followed by the rules for initial values.

User-defined Equation EI

Enter Equation | Fules fo Intal Valuss | Default Constraints |

Mame: | Schild
Equation

Antagholar=brtaghh=1e-d
T=1+[bntagholar[10"(pa2)))s
Den=1+(10"lagE C50°T A0"R] Hilklope
¥=Bottom + [Top-Bottom)Den

[(coman | [ com ] [ cw | [ Fase

[] Calculate derivatives with faster (1855 accurats] method

[ heb | [ el | [ B |

User-defined Equation EI
Enter Equation  Rules for Initial Yaluss } Dafault Constraints \
Defing a set of rules b compute initial values to use as a default svery
time you curve fit with this squation
ANTAGNM [Initial value, to be fit] v
Pa2 -1.0 “HMID v
5 IIritial walue, to be fit) -
LOGECSD 1.0 HMID v
HILLSLOPE ~ [1.0 (Initial walu, to be fi) v
BOTTOM 1.0 “HIN v
TOP 1.0 A v
[ heb | [ el | [ B |

To use global fitting, we need to specify which parameters
are shared. We also need to tell Prism that the antagonist
concentrations are in the column titles. Thisis done on the
constraints tab of the nonlinear regression dialog.

Parameters: Nonlinear Regression (Curve Fit) EI

Equation | Comparison  Constraints }lnma\ walues | ‘Weighting | Dutput | Range |

Fi, consirain or share a parameter

Parameter Constraint Value
ANTAGNM Data set constant (=column titls] v
PA2 Shared valus for all data sets -
S Canstant equal to v 10

LOGECS0 | Shared value for all data sets v
HILLSLOPE | Shared valus for all data sets v
BOTTOM | Shared valus for all data sets v
TOP Shared value for all data sets v

Constrain one parameter relative o anotier

] | must be greater than 1.0 | times
[l w | must be greater than |10 | times
[HelnMeDecide] [ cancel | [ oK |

We defined the parameter ANTAGNM (antagonist
concentration in nM) to be a data set constant, whose values
for each data set comes from the column title of that data set.
We st S equal to aconstant of 1.0. We are assuming that the
antagonist binds competitively. We share all the other
parameters, so their values are determined by all the data at
once.

In this example, the best-fit value of pA; is 9.43, with a 95%
confidence interval ranging from 9.28 to 9.59.
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Example 3. Total plus nonspecific binding.

In this example, we measured equilibrium binding of
radioligand at various concentrations of radioligand to
find the Bia and K of the radioligand. Since the
ligand binds to nonspecific sites as well as the receptor
of interest, you also measure nonspecific binding
(binding of radioligand in the presence of an excess of

an unlabeled receptor blocker).
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These kind of data are usually analyzed by first
subtracting the nonspecific binding from the total
binding. The resulting specific binding is then fit to a
model that describes equilibrium binding to one
receptor site.

Glaobal fitting can ssimultaneoudly fit both the total
binding and the nonspecific binding. Thereis no need
to first subtract the two data sets. The only trick isto
write amodel that fits different equations to each data
set. Prism lets you do this, as shown below.

Speci fi c=Bmax* X/ ( Kd+X)
Nonspeci fi c=NS* X
<A>Y=Specific + Nonspecific
<B>Y=Nonspeci fic

The line preceded by <A> only applies to the first data
set (column A, total binding). The line preceded by

<B> only applies to the second data set (nonspecific
binding). If you precede aline with <~A> it appliesto
al lines except the firgt.

Here isthe result. We used global nonlinear regression
to fit both data sets at once, sharing the parameter NS.

250

200

o
£
T 150
[
= 100
o
O
501
T T T 1
0 10 20 30 40
[radioligand, nM]
Total NS
Best-fit values

BMAX 1266 (not used)

KD 4.285 (not used)

NS 24.59 24.59

95% Confidence Intervals

BMAX 1124 to 1407 (not used)

KD 3.406t05.164  (not used)

NS 23.25 t0 25.92 23.25 t0 25.92

Example 4. Comparing data sets

Glaobal fitting can be used to compare curves between
data sets. The example below shows a dose-response
curve collected under control and treated conditions.
We want to know whether the difference between the
two dose-response curves is convincing.

The panel on the left assumes that the treatment was
effective. It fits the two |ogEC50 separately, but shares
the parameters that define the bottom, top and slope of
the curve. The panel on the right assumes that the
treatment is ineffective. It shares all four parameters,
so finds one curve for al the data. Thisis equivaent to
entering all the data as one big data set. The fit on the
left has a smaller sum-of-squares (the points are closer,
on average, to the separate curves), but also has an
extra parameter (since it fits two EC50s, rather than
one).
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Prism offers two ways to compare the two fits.

The extra sum-of-squares F test starts with an
assumption, aso known as the null hypothesis. This
assumption is that the treatment is really ineffective.
The test then asks: If this assumption were true, what is
the chance that the model on the left would fit your
data as much better asit does? In other words, what is
the chance that you'd see such alarge differencein
sum-of-sgquares? The answer, the P value, is 0.0024.
Since thisis so small, we conclude that the assumption
islikely to be wrong. Instead we conclude that the
treatment had a statistically significant effect on the
EC50.

Prism can also compare the two fits using Akaike's
Information Criterion (AlC). This procedure answers
the question: Which model (right or left panel) is more
likely to be correct, and how much more likely? The
answer is that the model on the left is 47 times more
likely to be right. Thereis a 2.1% chance that the
model on the right is correct, and a 97.9% chance that
the model on the left isright.

Example 5. Homologous binding

Y ou want to know how many of a particular kind of
receptor your tissue sample has, and how tightly a
particular drug (ligand) binds to those receptors. Since
the radioligand is quite expensive, you don't vary its
concentration. Instead, you add a single concentration
of aradioactively labeled drug to al the tubes, and also
add various amounts of the same drug that is not
radioactively labeled. Y ou assume that the two forms
of the ligand bind identically to the receptors, that you
have reached equilibrium, that the ligand only bindsto
one kind of receptor, and that there is no cooperativity.
Asyou add more of the unlabeled ligand, more of it
binds to the receptors so less of the radioactive ligand
binds. Since you only measure binding of the labeled
(radioactive) ligand, you see a downhill binding curve.
Y ou want your analysisto find the affinity of the
receptors for the drug (K¢) and aso the maximum
number of binding sites (Bmax)-

Here are some sample data. This experiment was run
with two different concentrations of the radioligand.
Thisis unusual (most homologous binding experiments
use a single concentration of radioligand), and you'll
see the advantage of using two concentrations later in
this example.
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From the law of mass-action, it is easy to derive an
equation that describes the binding.

— Bmaxx[HOt]
~ [Hot]+[Cold]+K

The concentration of hot ligand (the parameter [Hot])
isfixed by your experimental design, and isthe same
for al tubes. The concentration of cold (the parameter
[Cold]) is aso set by the experimenter, and varies from
tube to tube. In order to find more appropriate
confidence intervals of the Kg, it is better to actually fit
the logarithm of the K4 (LogKd), using this equation.

B, . X[Hot]
[Hot]+[Cold]+10/°%«

Here are the best-fit curves, each determined
independently.
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0.3 1.0

Best-fit values

LOGKD -9.331 -9.204

BMAX 6105 8205

HOTNM 0.3000 1.000

NS 1062 3121
95% Confidence Intervals

LOGKD -9.8341t0-8.829  -9.579 to -8.829

BMAX 1851 to 10360 5469 to 10941

NS 861.5 to 1263 2909 to 3333

Note that the B is the total possible specific binding
(in cpm) to all binding sites. At the concentration of
radioligands used in this experiment, the radioligand
bindsto only afraction of these sites. That explains
why the best-fit B values (6125-8205 cpm) are quite
a bit higher than the observed specific binding (about
1000-4000 cpm).

Note that the confidence intervals are quite wide. The
confidence interval for K4 extends over an order of
magnitude, and the confidence interval for Bpax
extends more than twofold. Why? Because you get
almost the same results when you have lots of

receptors that bind the drug weakly, or afew receptors
that bind the drug tightly. The graph below
superimposes three curves through the data collected
using 1 nM of radioligand. The solid curve is the same
one shown above, with alogK 4 of -9.2 and a By Of
8205. The dashed curve was fit constraining the K4 to
be an order of magnitude lower (so logK 4 was fixed to
equal -10.2). With this constraint, the best-fit value of
Bmax decreased to 5388. This curve is amost
indistinguishable from the best-fit solid curve. The
dotted curve constrains the K4 to be an order of
magnitude higher than the best fit value (the logK 4 was
fixed to equal -8.2). Since the ligand has much lower
affinity for the receptors, it must be binding to a small
fraction of many more receptors. This explains why the
best fit value of B increases four fold to 25813. The
dotted curve clearly fits the data less well than the solid
curve, but the difference is not enormous (the R?
decreases from 0.964 only down to 0.904). What does
it mean that these three curves, which look very smilar
to one another, span two orders of magnitude in
receptor affinity? Thistells us that homologous binding

data are smply ambiguous when you use asingle
concentration of radiolabeled ligand.

logKd  Bmax R
° . -=.10.20 5388 0.959
— 920 8205 0.964
=== 820 35813 0.904
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1012 10 101° 10° 10® 107 10° 10°
[unlabeled drug]

The graph below shows the two curvesfit globally.
Thereisonly one Ky and one By no matter how much
radioligand you use, so these parameters were shared
between the data sets. Only the best-fit value of the
nonspecific binding was fit individually for each data
.
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Best-fit values

LOGKD -9.107 -9.107

BMAX 8899 8899

HOTNM 0.3000 1.000

NS 980.6 3119
95% Confidence Intervals

LOGKD -9.271 to -8.943 -9.271 to -8.943

BMAX 7196 to 10602 7196 to 10602

NS 871.7 to 1089 2977 to 3262

Note that the confidence intervals are narrower than
they were. The confidence interval for Kd now spans a
factor of two, rather than afactor of ten with individual
fits. Fitting both curves at once gave us much more
reliable (and more accurate) results. Fitting the data
globally gave us useful results. Fitting the two curves
individually did not.
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